
IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 2, April-May, 2013

ISSN: 2320 - 8791

www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)

1

Abstract— This paper presents a hardware implementation of

Neural Networks in reconfigurable field programmable gate

array (FPGA). The need for more number of multipliers and

adders in Neural Networks limits the size of network. In this

paper we propose a technique to minimize the resource by

implementing the layer multiplexing of the network. Therefore

the resource utilized is much reduced without much reduction in

the speed. Thereby we can implement a huge network in

application specific integrated circuit (ASIC) at low cost. In this

paper instead of implementing the complete network, we

implement only the largest layer in the network. Then using the

control block we can use that largest layer to function as different

layers of network. The control block contains the inputs, weights,

bias and excitation function for every layer of network. It ensures

proper functioning by assigning appropriate information to the

layer being computed. This concept is effective in reducing the

resource requirement at the cost of a moderate overhead on

speed. This makes the NN application viable to cost and speed for

online applications. Multilayer networks have been implemented

using Xilinx FPGA.

Index Terms—Artificial Neural Network (ANN), FPGA(Field

Programmable Gate Array),Layer Multiplexing, Neural

Networks, Verilog.

I. INTRODUCTION

HE emergence of artificial neural networks is the idea to

build machines more like humans. The special feature of

artificial neural network (ANN) is their ability to learn as they

get trained. They have additional features like robustness to

noise and fault tolerance which paves way for many

applications to various fields. Real time applications are in

need of high speed neural computations with minimum

number of neural layers. So layer multiplexing helps to reduce

the number of layers to a single large layer combining the

functions of other layers. Implementation of neural network

can either be by analog or digital hardware. Analog systems

are more difficult to design and implement on the other hand

digital systems are known for their higher accuracy,

flexibility, repeatability and have better flexibility. The digital

neural network implementations can be done using field

programmable gate array (FPGA) as it performs parallel

processing easier than other DSP and ASIC processors.

Consider a network with three layers comprising of an input

layer, a hidden layer and an output layer. To realize all types

of nonlinearity using three layers, large number of neurons is

needed in the hidden layer resulting in a massive NN.

The size and complexity of an NN depends on both the total

number of neurons and the number of layers. In the

implementation of NN, parallel computation has the advantage

of high speed but resource requirement is large which in turn

increases the system cost. Sequential operation reduces

resource but results in lower speed of operation. Hence, the

requirement of high speed and low cost is addressed in this

paper.

This paper proposes a simple architecture to implement a

complete NN using minimum resource regardless of the size

of the network. A single largest layer (i.e., layer with

maximum neurons) is implemented instead of implementing

the complete network. This layer calls itself repeatedly and

behaves like the different layers of the network. The proposed

multiplexed architecture implementation greatly reduces the

resource requirement, thus making multilayer ANNs realizable

with low-cost FPGAs.

II. STRUCTURE OF A SINGLE NEURON

A. Computational blocks of a single neuron:

The basic structure of a neuron with n inputs is shown

below. Let p1,p2……..pn be „n‟ inputs, w1,w2,…….wn be

corresponding weights and „b‟ be bias.

Let f(x) be the non linear excitation function. The

processing done by a neuron is described by the following

 y = f(x)
where

 ∑
 iwi + b

f(x), the non linear excitation function can be any excitation

function such as linear, log sigmoid or tan sigmoid function.

1) Linear

 ()

 2) Log-sigmoid

 ()

Implementation of Feed Forward Neural Network Using Layer

Multiplexing for Effective Resource Utilization in FPGA

R.Asha
1
 P.Bowrna

2
 and F.Mhaboobkhan

3

Electronics and Communication Engineering (ECE).

MEPCO SCHLENK ENGINEERING COLLEGE, SIVAKASI.

T

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 2, April-May, 2013

ISSN: 2320 - 8791

www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)

2

3) Tan-sigmoid

 ()

 Figure 1: Structure of a neuron

The single-neuron implementation basically requires

computational elements such as simple adder, multiplier, and

complex evaluator of the nonlinear excitation function[2].

Hence, the computational blocks in a single-neuron

implementation are the addition block, multiplication block,

and excitation function block.

B. Precision of the Blocks in Single-Neuron

Precision is the important parameter in the digital

representation of a neuron which decides the output resolution.

Higher resolution needs large resource requirement which

ultimately increases the cost[3].

The inputs are binary numbers which is either 0 or 1. The

weights are signed numbers with 1 sign bit, 3 bits for whole

part and 4 bits for fractional part. The bias is also signed

numbers with 1 sign bit, 3 bits of whole part and 4 bits of

fractional part.

C. Implementation of a Single Neuron in FPGA

The structure of a neuron is split into various computational

sub-blocks and these blocks are implemented individually, and

then they are integrated to form the complete neuron[1]. The

various sub-blocks are detailed as follows:

1) MUL8: It performs multiplication of two signed numbers.

The inputs are obtained from the main control block.

2) ADD: It performs addition of signed numbers. The inputs

are obtained from main control block and the output is

returned to the same control block.

3) SIGMA_CTRL: This block is the main block where all

other sub-blocks are integrated together.

 a) It places correct weights and bias for

multiplication

 b) It knows the number of layers and number of

neurons in each layer.

 c) After performing the corresponding multiplication

and sum for that result we find the excitation function.

III. Layer Multiplexing in the network

 The layers of a neural network consist of input layer,

hidden layer and output layer. The hidden layers can be one or

many with varying number of neurons. Figure 2 shows the

general network with n layers.

S
0
 shows the input layer, S

1
 to S

m-1
 shows the hiden layers

and S
m
 shows the output layer.

 Figure 2: General network with n layers

The layer with maximum number of neurons is

implemented and the remaining layers are accessed within the

single largest layer by making the unused neuron‟s input as

zero. This is layer multiplexing in neural network, shown in

figure3. For example consider a network 2-3-5-8-1 i.e. with

two input neurons and 1 output neuron with three hidden

layers of 3, 5 and 8 number of neurons. The layer with 8

neurons is implemented and the remaining layers are

multiplexed within that layer.

 Figure 3: General layer multiplexing

A. Implementation of Layer-Multiplexed NN

Implementation details of a layer-multiplexed NN are

presented in this section. Four different network architectures

are such that for all the networks the single largest layer

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 2, April-May, 2013

ISSN: 2320 - 8791

www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)

3

contains five neurons and each neuron has eight inputs. The

architecture are as follows:

1) 8-5-3;

2)8-5-5-3;

3)8-5-5-5-3;

4)8-5-5-5-5-3;

All those NNs have eight inputs and three outputs. The log

sigmoidal functional is used for the hidden layers and output

layer. This choice of network is to illustrate the saving in

resource, which increases as the number of layers increases.

So we implement only the largest layer of NN along with a

control block. The control block contains information about

the number of layers and number of neurons in each layer. It

also contains the weights and bias weight of each layer. So the

control block will have knowledge about the layer it is

processing. So it picks the corresponding weights and bias to

compute the output of each layer. The output x is then

converted to f(x) using the log-sigmoidal excitation function

for the hidden and output layer alone[1].

The sequential operation of the control block is detailed as

follows:

1) All the weights and bias of the neurons get initialized.

2) The corresponding input gets multiplied with weight and

bias is added. The output x obtained at this stage is

converted to f(x) using log-sigmoidal excitation function.

3) This output is then fed to the next layer. Since we are

going to implement only single layer, we fed the output

obtained in this layer back to the implemented single layer.

4) If we are not going to use all neurons in the implemented

largest layer then we make the inputs for those neurons as

Zero.

5) The process repeats until we meet the final output result.

The various steps involved in FPGA design flow are as

follows: 1) design entry, 2) synthesis, 3) simulation,

4)implementation, and 5) device programming. The code is

simulated in ModelSim ALTERA STARTER EDITION

6.4a and executed in Xilinx device.

This technique of Layer Multiplexing can reduce the

resource requirements and improve the speed. It can save

resource upto 50% and speed is improved upto 17%. As the

operating clock frequency of FPGA is high, the extra

overhead in cycles does not affect overall operation of the

network.

IV. FPGA implementation of Neural based Xor function

This paper proposes a implementation of NNs using FPGA

with minimum resource without much loss in speed. The

resource reduction technique is demonstrated by implementing

a neural-based XOR function using FPGA. Here NN based

XOR function 3-5-1 network is chosen. Here we implement

only the single largest layer with 5 neurons. Log-sigmoid

function is used for the hidden layers and the output layer of

the network. To determine the weights and bias, we trained the

network in Matlab[5]. By implementing this technique we

require only five neurons. Otherwise it would require 9

neurons to implement the complete network. Higher Bit

precision would increase the accuracy but would increase the

resource requirements also. However, for the given bit

precision the proposed technique would minimize the resource

requirement and would cost less without much compromise in

the speed.

V. CONCLUSION

Multilayer feed forward NNs have been implemented using

FPGA. The implementation of only largest layer along with a

control block would minimize the resource. The control block

ensures proper functioning by assigning simultaneously

appropriate weights, biases, and excitation function. Different

network configurations have been implemented without and

with layer multiplexing. The saving in resource would

increase with the increase in the number of hidden layers.

With increase in the hidden layers, the control block

complexity would increase resulting in slight overhead on

speed. The large saving in resource leads to reduced cost

making NN applications more feasible and promising.

REFERENCES

[1] S.Himavathi,D.Anitha, A.Muthuramalingam “Feedforward Neural

Network Implementation in FPGA using Layer Multiplexing technique” in

IEEE Transactions on Neural Networks, Vol. 18, No. 3,May 2007

[2]S. L. Pinjare, Arun Kumar M, “Implementation of Neural Network Back

Propagation training Algorithm on FPGA” in International Journal of

Computer Applications(0975-8887), Volume 52-No. 6,August 2012

[3] A.Muthuramalingam, S.Himavathi, E.Srinivasan “Neural Network

Implementation using FPGA: Issues and Application” in International Journal

of Information Technology Volume 4 Number 2

[4]X. Yu and D.Deut, “Implementing neural networks in FPGA” in Proc.

Hardware Implementation Neural Network Fuzzy Logic Inst. Elect. Eng.

Colloq.,Mar. 9,1994,pp. 326-329

[5]K. M. Hornick, M. Stinchcombe, and H. White, “Multilayer feedforward

neural networks are universal approximators,” Neural Netw., Vol. 2, No. 5,pp.

141-154,1985.

[6] Naleih M. Botros and M. Abdul-Aziz “Hardware Implementation of an

Artificial Neural Network Using Field Programmable Gate Arrays (FPGA's)”

ieee transactions on industrial electronics VOL. 41. NO 6. December 1994.

